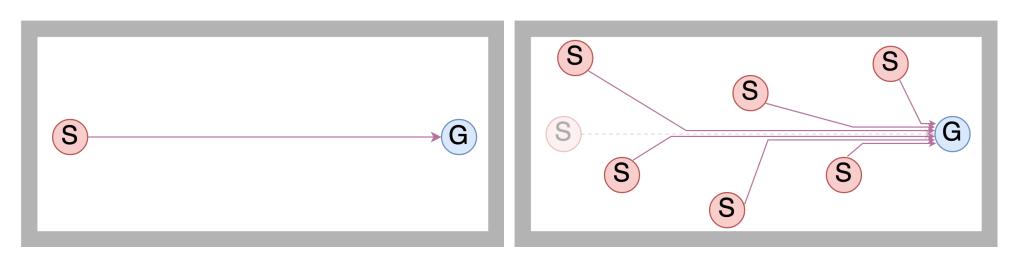
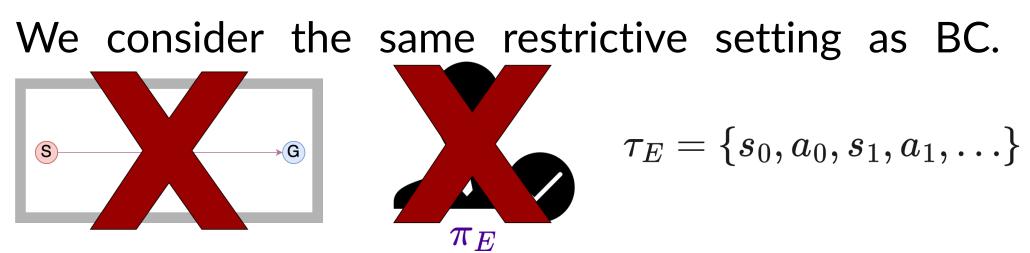
Motivation

- Expert demonstrations can help RL solve difficult tasks, but naive cloning suffers from covariate shift
- Demonstrations are costly to obtain in many real world applications

Question: Given a limited number of demonstrations from a single start state, how to learn a policy that can solve the task from new start states?



Problem Setting

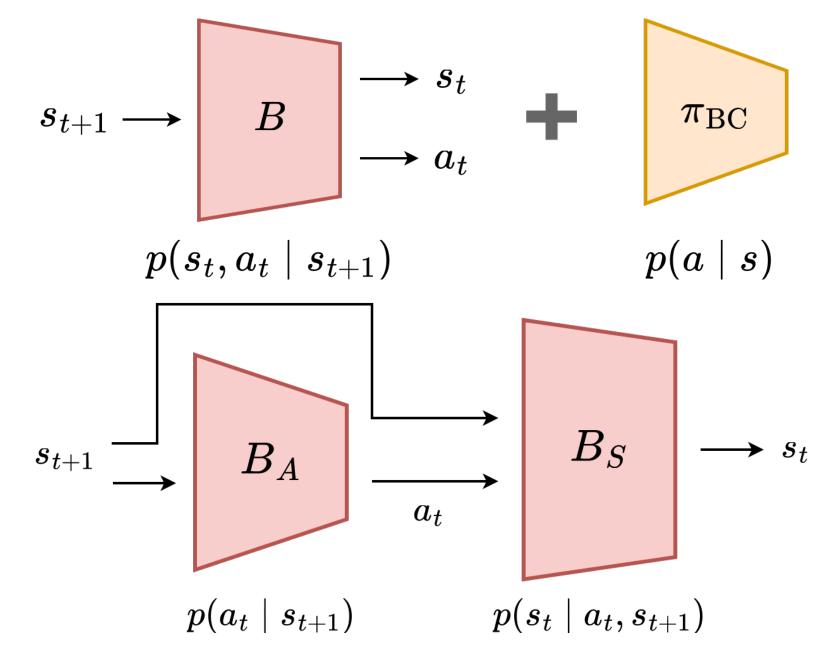


Objective: Learn a robust policy that can solve the task from start states unseen in the training data. Robustness is measured as

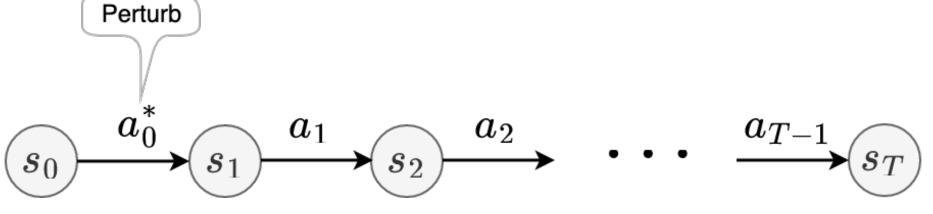
$$R(\pi_{ heta}) = \mathbb{E}_{s_0 \in S_R} [\mathbb{1}\{\exists t \leq T, s_t \in \mathcal{G}\}],$$
 (1)
where $S_R \supset S_0$.

Method

Backwards **Model-based Imitation Learning (BMIL)** Key Idea: Pair a generative backwards dynamics model with an imitation learning policy.



Using *B*, we generate short model rollouts starting from every state in the demonstrations. To produce diverse paths, we slightly perturb the action from B_A .



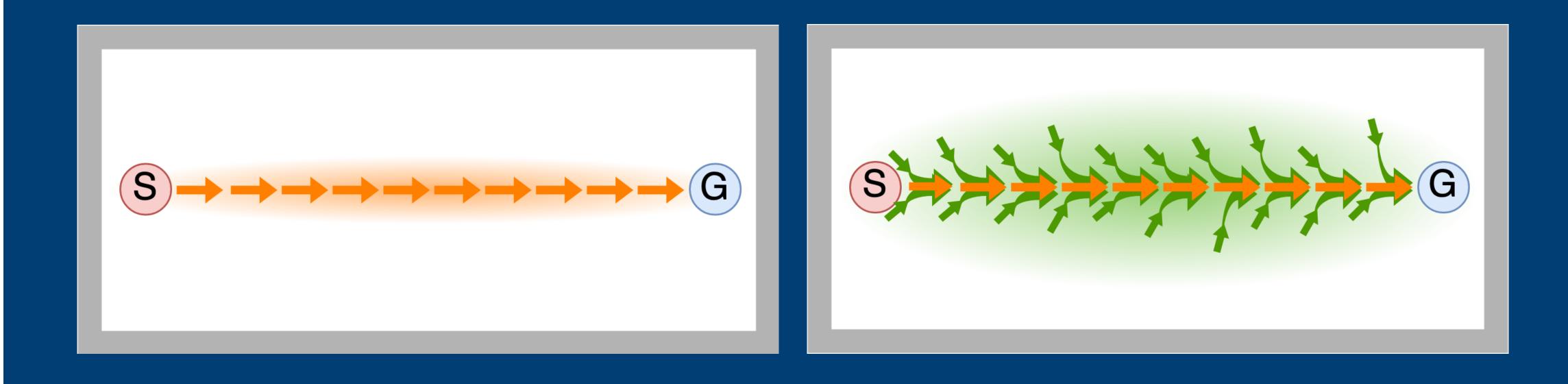
The policy is then trained on both the rollouts and demonstrations.

 $\mathcal{L} = p_d \mathcal{L}_{BC} + (1 - p_d) \mathbb{E}_{(s,a) \sim \tau_B} \left[-\log \pi_\theta(a \mid s) \right], \quad (2)$ where p_d is the probability of sampling from demonstration data.

Robust Imitation of a Few Demonstrations with a Backwards Dynamics Model

Jung Yeon Park Lawson L.S. Wong Khoury College of Computer Sciences, Northeastern University

In imitation learning with no environment interactions, a backwards dynamics model can help provide more synthetic data to train a robust policy. By perturbing the model rollouts, the policy learns a wider region of attraction and can generalize to start states unseen in the demonstrations.



Scan for paper

Maze

Adro

Pusł Pick,

Computation Budget: BMIL trains both the model and policy and uses more total gradient steps than BC ($\sim 6x$ on Fetch). Increasing the number of policy gradient steps for BC does not improve robustness.

Contributions

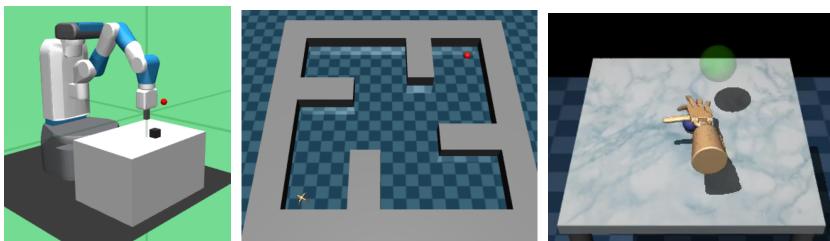
• We propose new imitation learning method that pairs a backwards dynamics model with a policy. • We demonstrate that a **backwards model can im**-

prove robustness over behavior cloning.

• On a variety of long-horizon, sparse-reward domains, BMIL noticeably extends the region of at**traction** around demonstration data.

Experiments

Continuous control: 1) Fetch, 2) Maze, 3) Adroit.



The training data consists of trajectories from a single start-goal pair and/or their ε -neighborhoods. We evaluate by varying the initial states (e.g. joint positions/velocities, agent coordinates, etc.)

			Robustness (%)			Relative to BC		
			BC	VINS	BMIL	BC	VINS	BMIL
ch	Push (5 demos)		12.1±0.3	12.8 ±0.4	14.6 ±0.6	1	1.06	1.21
	PickAndPlace (10 demos)		4.1 ± 0.1	3.4 ± 0.1	17.5 ±0.9	1	0.84	4.31
ze	Point (20 demos)	UMaze	49.0 ±1.9	39.5 ±2.1	47.8 ±3.5	1	0.81	0.98
		Room5x11	36.8 ±3.4	17.3 ± 2.8	38.6 ±3.4	1	0.47	1.05
		Corridor7x7	33.7 ± 1.5	37.7 ±1.2	38.9 ±2.3	1	1.12	1.16
	Ant (20 demos)	UMaze	63.0 ±1.0	44.7 ± 2.1	64.8 ±1.5	1	0.71	1.03
		Room5x11	33.2 ±0.9	30.2 ± 0.8	$29.1{\scriptstyle \pm 0.8}$	1	0.91	0.87
		Corridor7x7	21.7 ±0.6	19.6 ± 0.6	17.6 ± 0.5	1	0.90	0.81
oit	Relocate (20) demos)	7.9±0.7	3.8 ±0.7	13.3 ±1.0	1	0.48	1.68

• BMIL learns a larger region of attraction than BC and substantially increases robustness.

• BMIL still achieves close to 100\$ success rates on original task.

Additional Results

Forward vs Backwards Dynamics: Using a forwards dynamics model does not increase robustness.

	Robustness (%)				Relative to BC			
	BC	BMIL	BMIL	BC	BMIL	BMIL		
		(Forwards)	(Backwards)		(Forwards)	(Backwards)		
h	12.1±0.3	12.4 ± 0.6	14.6 ± 0.6	1	1.03	1.21		
AndPlace	4.1 ±0.1	4.1 ±0.2	17.5 ± 0.9	1	1.03	4.31		

