
Motivation
•Expert demonstrations can help RL solve difficult
tasks, but naive cloning suffers from covariate shift

•Demonstrations are costly to obtain in many real
world applications

Question: Given a limited number of demonstrations
from a single start state, how to learn a policy that can
solve the task from new start states?

Problem Setting
We consider the same restrictive setting as BC.

Objective: Learn a robust policy that can solve the
task from start states unseen in the training data. Ro-
bustness is measured as
R(πθ) = Es0∈SR [1{∃t ≤ T, st ∈ G}] , (1)

where SR ⊃ S0.

Method
Backwards Model-based Imitation Learning (BMIL)
Key Idea: Pair a generative backwards dynamics
model with an imitation learning policy.

Using B, we generate short model rollouts starting
from every state in the demonstrations. To produce
diverse paths, we slightly perturb the action from BA.

The policy is then trained on both the rollouts and
demonstrations.
L = pdLBC + (1− pd)E(s,a)∼τB [− logπθ(a | s)] , (2)

where pd is the probability of sampling from demon-
stration data.
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In imitation learning with no environment
interactions, a backwards dynamics model can help
provide more synthetic data to train a robust policy.
By perturbing the model rollouts, the policy learns
a wider region of attraction and can generalize to
start states unseen in the demonstrations.
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Contributions
•We propose new imitation learning method that
pairs a backwards dynamics model with a policy.

•We demonstrate that a backwards model can im-
prove robustness over behavior cloning.

•On a variety of long-horizon, sparse-reward do-
mains, BMIL noticeably extends the region of at-
traction around demonstration data.

Experiments
Continuous control: 1) Fetch, 2) Maze, 3) Adroit.

The training data consists of trajectories from a sin-
gle start-goal pair and/or their ε-neighborhoods. We
evaluate by varying the initial states (e.g. joint posi-
tions/velocities, agent coordinates, etc.)

Robustness (%) Relative to BC
BC VINS BMIL BC VINS BMIL

Fetch Push (5 demos) 12.1±0.3 12.8±0.4 14.6±0.6 1 1.06 1.21
PickAndPlace (10 demos) 4.1±0.1 3.4±0.1 17.5±0.9 1 0.84 4.31

Maze

Point
(20 demos)

UMaze 49.0±1.9 39.5±2.1 47.8±3.5 1 0.81 0.98
Room5x11 36.8±3.4 17.3±2.8 38.6±3.4 1 0.47 1.05
Corridor7x7 33.7±1.5 37.7±1.2 38.9±2.3 1 1.12 1.16

Ant
(20 demos)

UMaze 63.0±1.0 44.7±2.1 64.8±1.5 1 0.71 1.03
Room5x11 33.2±0.9 30.2±0.8 29.1±0.8 1 0.91 0.87
Corridor7x7 21.7±0.6 19.6±0.6 17.6±0.5 1 0.90 0.81

Adroit Relocate (20 demos) 7.9±0.7 3.8±0.7 13.3±1.0 1 0.48 1.68

•BMIL learns a larger region of attraction than BC and
substantially increases robustness.

•BMIL still achieves close to 100$ success rates on
original task.

Additional Results
Forward vs Backwards Dynamics: Using a forwards
dynamics model does not increase robustness.

Robustness (%) Relative to BC

BC BMIL
(Forwards)

BMIL
(Backwards) BC BMIL

(Forwards)
BMIL

(Backwards)
Push 12.1±0.3 12.4±0.6 14.6±0.6 1 1.03 1.21
PickAndPlace 4.1±0.1 4.1±0.2 17.5±0.9 1 1.03 4.31

Computation Budget: BMIL trains both the model
and policy and uses more total gradient steps than BC
(∼ 6x on Fetch). Increasing the number of policy gra-
dient steps for BC does not improve robustness.


