

Learning Symmetric Embeddings for Equivariant World Models

Jung Yeon Park^{1*}, Ondrej Biza^{1*}, Linfeng Zhao¹, Jan-Willem van de Meent^{1,2}, Robin Walters¹

Equal contribution ¹ Northeastern University, Boston, MA, USA ² University of Amsterdam, Netherlands

Motivation

- Neural networks equivariant to symmetries, such as rotation and translation, are more generalizable and sample-efficient.
- Symmetries in natural data are difficult to express analytically, limiting the use of equivariant networks.

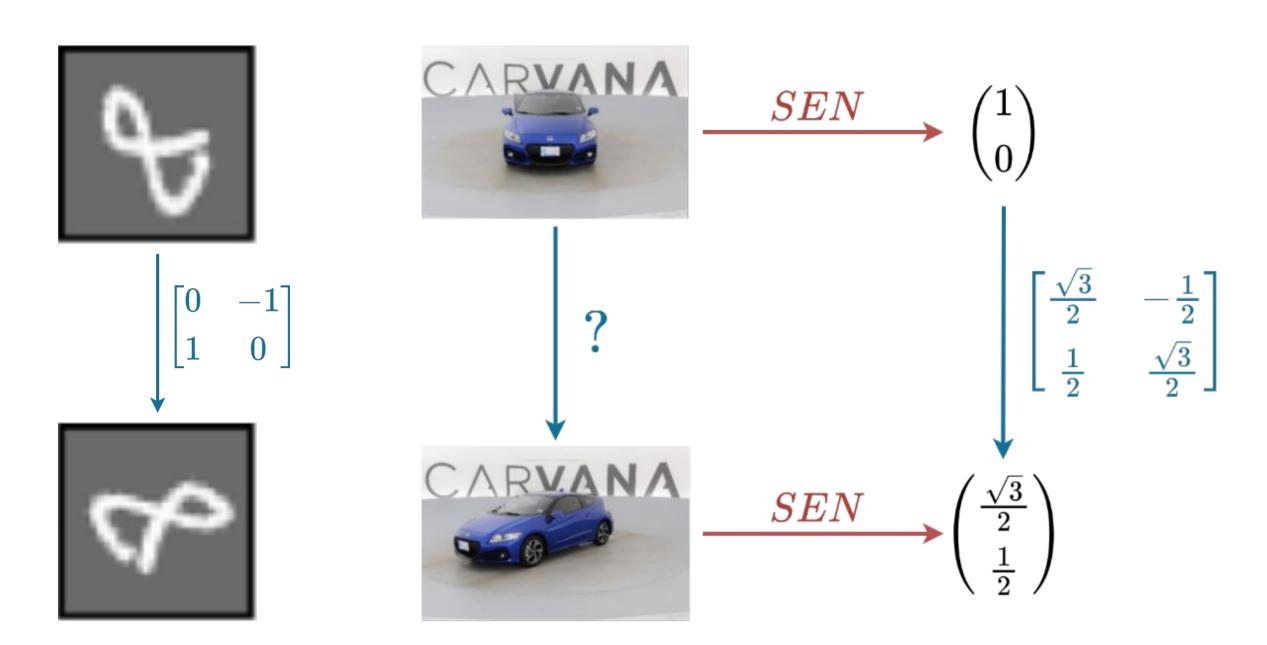


Figure 1: 2D rotation of an object can be expressed analytically for pixels, whereas a 3D rotation is difficult to compute.

Illustrative Example

- Simple supervised sequence labeling task to test whether we can learn the input transformation
- Compose a fully connected (FC) layer with 1D convolutional layers and compare against only FC

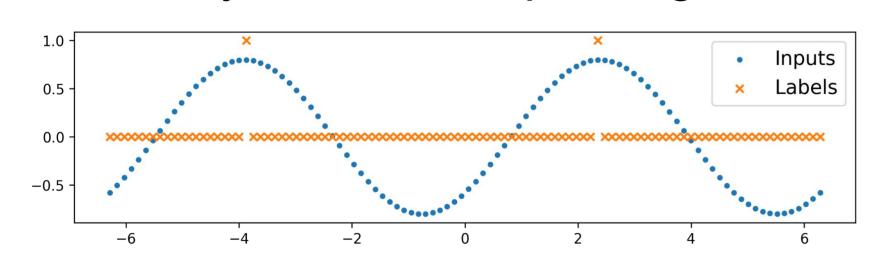


Figure 2: Training sample

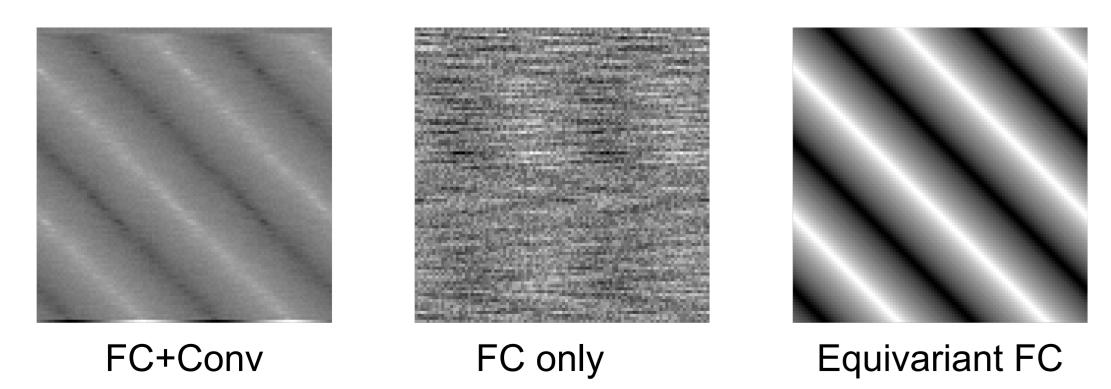


Figure 3: First FC layer weights. FC+Conv network learns shift equivariance

Symmetric Embedding Network

Key idea: Pair <u>SEN</u> with a downstream equivariant network and train end-to-end.

Meta-architecture: We propose a template for learning equivariant world models with input images for various downstream network architectures and symmetries (Figure 4).

SEN is an unconstrained network that compresses inputs to feature space for which group action is known. Downstream equivariant networks (**Encoder** and **Transition Model**) provide inductive bias.

Learning is done end-to-end using a contrastive loss.

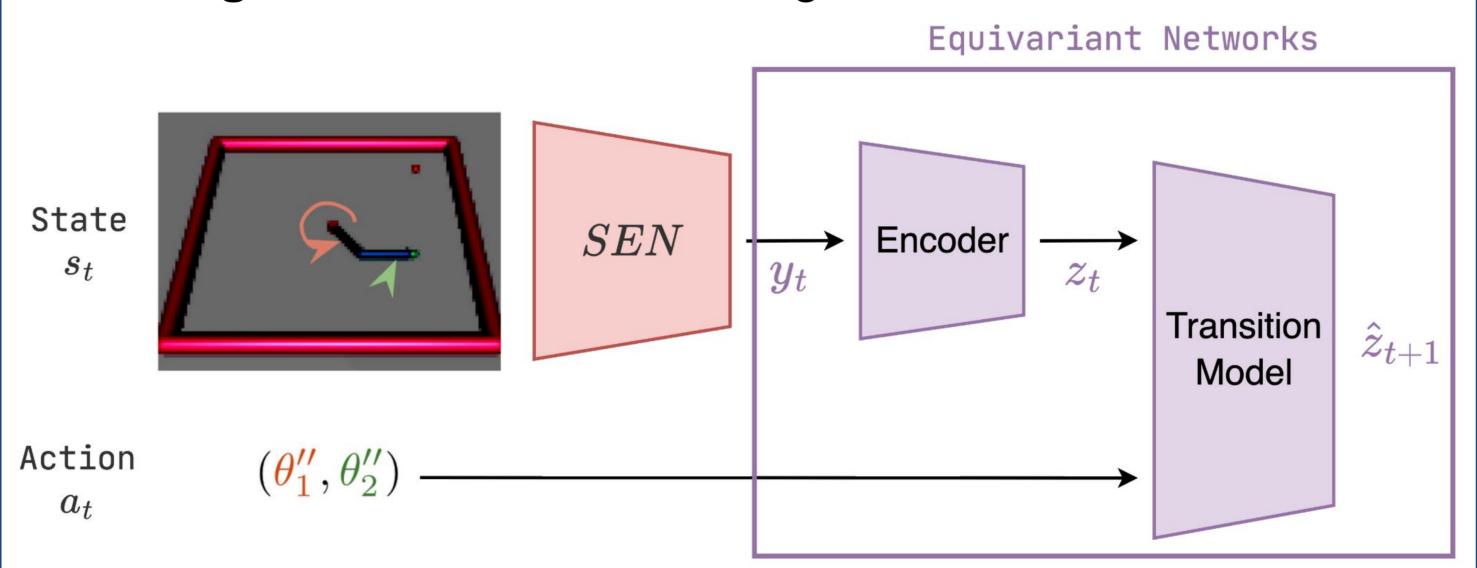
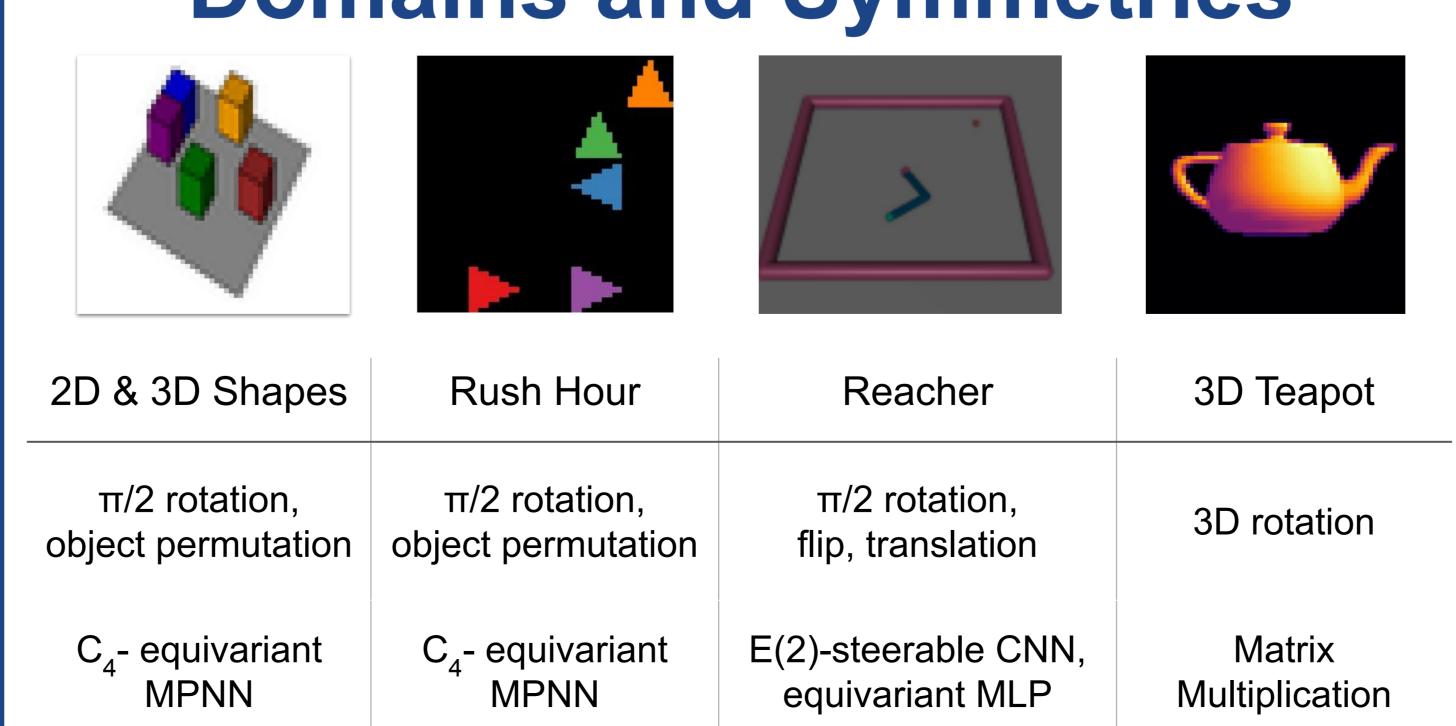


Figure 4: Meta-architecture with downstream equivariance.

Domains and Symmetries



SEN Contributions

- Learn implicitly how to map from pixel space with unknown group action to feature space with a known symmetry.
- Flexible meta-architecture for variety of different symmetry groups.
- Extend advantages of equivariant neural network architectures to previously inaccessible domains.

Results

 Develop two measures of equivariance Equivariance Error (EE) and Distance Invariance Error (DIE).

	Model	TH@1 (yaw, %)	TH@1 (pitch, %)	TH@1 (roll, %)	HH@1 (1 step, %)	EE(S)	DIE (1 step, $\times 10^{-2}$)
	Homeomorphic VAE	6.7	10.0	3.3	0.9	2.41	0.68
3D Teapot	None	6.7 ± 6.7	60 ± 40	$86.7{\pm}6.6$	$93.9{\scriptstyle\pm2.2}$	$2.38{\pm}0.04$	3.41 ± 0.16
	Ours (MatMul)	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	0.05 ± 0.0	0.45 ± 0.01

Table 1: Teapot - SEN achieves lower EE and DIE.

SEN learns consistent representations

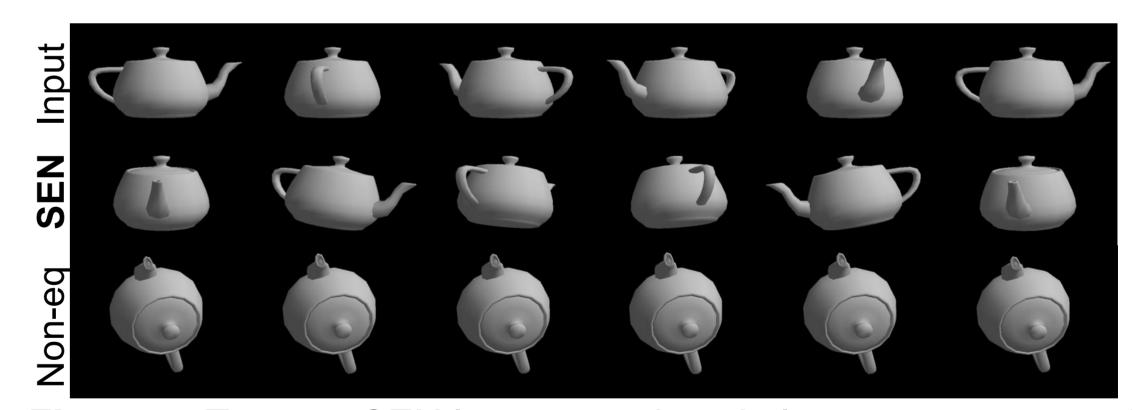


Figure 5: Teapot - SEN learns rotations in latent space correctly.

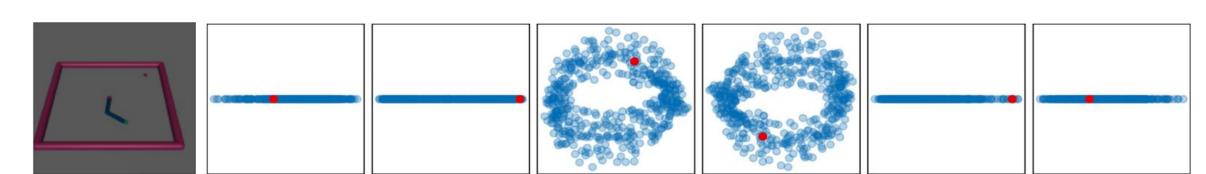


Figure 6: Reacher - learned latent factors. Middle factors are consistent with arm joint rotations.

SEN generalizes to actions unseen during training.

	Limited Actions \mathcal{A}'	Model	H@1 (10 step, %)	MRR (10 step, %)	EE(S)	DIE (10 step, $\times 10^{-3}$)
2D Shapes	{up}	CNN Ours/Full	$2.8{\pm}0.6\ 100{\pm}0.0$	$5.3{\pm}0.4$ $99.9{\pm}0.0$	$0.00\pm0.0 \ 0.00\pm0.0$	$0.19{\pm}0.0 \ 0.00{\pm}0.0$
3D Blocks	{up,right,down}	None Full Ours	$52.3{\pm}14. \\ 83.7{\pm}36. \\ 99.9{\pm}0.0$	$61.8 \pm 13.$ $86.0 \pm 31.$ 100 ± 0.0	$0.98 \pm 0.2 \ 0.81 \pm 0.5 \ 0.96 \pm 0.3$	$181\pm79. \\ 15\pm9.1 \\ 5\pm4.7$

Table 2: Next state prediction results for unseen actions.